Nguồn sóng hấp dẫn Sóng_hấp_dẫn

Biểu đồ phân bố các nguồn sóng hấp dẫn mà LIGO và LISA sẽ phát hiện ra tương ứng với các dải tần số. Trục đứng là biên độ sóng hấp dẫn, trục ngang là tần số sóng.

Sóng hấp dẫn phát ra do sự không đối xứng của mô men tứ cực gây bởi chuyển động có gia tốc, với điều kiện là các chuyển động không hoàn toàn đối xứng cầu (giống như một quả cầu nở rộng hoặc co lại) hoặc đối xứng trụ (giống như một đĩa quay hoặc hình cầu quay quanh trục). Một ví dụ đơn giản của nguyên tắc này đó là trường hợp ở quả tạ quay. Nếu quả tạ quay tít như bánh xe trên một trục, nó sẽ không tỏa ra sóng hấp dẫn; nếu quay quanh trục như hai hành tinh quay quanh nhau, nó sẽ tỏa ra sóng hấp dẫn.[28]:149 Quả tạ càng nặng, và quay càng nhanh thì sóng hấp dẫn sẽ phát ra càng mạnh. Nếu chúng ta tưởng tượng một trường hợp cực hạn, trong đó hai đầu của quả tạ là những thiên thể lớn như sao neutron hoặc lỗ đen quay quanh nhau rất nhanh, thì một lượng đáng kể các bức xạ hấp dẫn sẽ phát ra từ hệ này.

Tần số sóng hấp dẫn phụ thuộc vào đặc trưng hệ động lực quy mô theo thời gian. Đối với hệ sao đôi, tần số quỹ đạo của hai thiên thể quay quanh nhau chính là tần số của sóng hấp dẫn mà hệ phát ra. Các nguồn sóng hấp dẫn thường được phân loại theo dải tần số. Tần số 1 Hz đến 10 kHz là dải nguồn sóng cao tần, như hệ hai sao neutron, hệ hai lỗ đen, siêu tân tinh... và đây cũng chính là dải tần mà các máy thăm dò sóng hấp dẫn trên mặt đất có thể phát hiện ra được. Từ 1mHz đến 1 Hz được phân loại thành nguồn sóng thấp tần, như lỗ đen siêu khối lượng, hệ hai sao lùn trắng... những nguồn này có thể phát hiện từ những vệ tinh quan trắc sóng hấp dẫn dựa trên phương pháp giao thoa kế laser để đo dịch chuyển Doppler của chùm tia laser. Nguồn sóng từ 1nHz đến 1mHz được phân loại thành dải tần rất thấp, từ các nguồn lỗ đen siêu khối lượng, dây vũ trụ... Phương pháp phát hiện sóng hấp dẫn bằng cách theo dõi cũng một lúc thời gian đến của xung sóng vô tuyến từ nhiều sao xung một lúc cho phép xác định sóng hấp dẫn trong phạm vi tần số rất nhỏ từ 10−18 Hz đến 10−15 Hz, tương ứng với sóng hấp dẫn phát ra từ thời điểm vũ trụ lạm phát sau Vụ Nổ Lớn mà những sóng này có thể để lại dấu vết trong bức xạ phông vi sóng vũ trụ.[28]:149-150

Hệ sao đôi

Hai ngôi sao có khối lượng khác nhau ở trong quỹ đạo tròn. Mỗi ngôi sao xoay quanh tâm chung của chúng (ký hiệu bằng dấu thập nhỏ màu đỏ) theo một quỹ đạo tròn mà với khối lượng lớn hơn nó có quỹ đạo nhỏ hơn.Hai ngôi sao có khối lượng tương tự ở cùng quỹ đạo tròn hướng về tâm chung của chúng.Hai ngôi sao có khối lượng tương tự ở trong quỹ đạo hình elip về quanh khối tâm.

Những hệ sao đôi có khả năng phát ra sóng hấp dẫn ở mức quan sát được bao gồm hệ chứa một sao lùn trắng, hoặc một sao neutron hoặc lỗ đen và các hệ sao đôi khoảng cách quỹ đạo giữa hai thiên thể là nhỏ, như hệ sao quay quanh một lỗ đen, hệ sao neutron quay quanh lỗ đen, hệ hai sao neutron, hệ hai sao lùn trắng... Những hệ này có thành phần mô men tứ cực với độ biến thiên theo thời gian lớn, và là những nguồn quan trọng đối với các trạm quan trắc trên mặt đất như LIGO và trạm thăm dò trong không gian như eLISA. Cho tới nay chỉ có những chứng cứ gián tiếp xác nhận sự tồn tại của sóng hấp dẫn thông qua việc quan sát những nguồn sóng này (chẳng hạn hệ sao xung và sao PSR 1913+ 16). Trên toàn bộ, quá trình bức xạ sóng hấp dẫn từ hệ sao đôi bao gồm quá trình ba giai đoạn, hai thiên thể quay xoáy ốc càng gần về nhau (inspiral) với tốc độ ngày càng nhanh hơn và càng gần nhau hơn, sáp nhập vào nhau (merger) tạo thành vật thể duy nhất quay xung quanh trục của nó một cách ổn định khi nó phát ra sóng hấp dẫn mang theo thông tin về khối lượng và spin của vật thể này (ringdown phase - giai đoạn rung ngân).[29]

Bức xạ hấp dẫn phát ra từ hệ sao đôi làm hệ mất mô men động lượng, khiến cho quỹ đạo của hệ suy giảm dần với một tốc độ rất chậm, dần dần làm cho hai thiên thể va chạm vào nhau. Nói cách khác, thời gian làm cho quỹ đạo của hệ suy giảm lớn hơn rất nhiều lần so với chu kỳ quỹ đạo của nó, do đó giai đoạn sáp nhập thường được tinh toán bằng phương pháp xấp xỉ hậu Newton dùng để tiên đoán ra dạng sóng hấp dẫn mà hệ sẽ phát ra.[30] Tần số sóng hấp dẫn có thể được suy ra từ phương pháp xấp xỉ, do tần số này tỉ lệ với căn bậc hai của mật độ trung bình của khối lượng - năng lượng của hệ đôi. Các trạm quan trắc mặt đất có thể phát hiện ra các hệ sao đôi neutron và lỗ đen khối lượng sao, trong khi eLISA được phát triển để thăm dò các hệ đôi sao lùn trắng và các lỗ đen siêu khối lượng khác.[25]:Đoạn 4.2.3[28]:149-150

Sóng hấp dẫn lấy đi năng lượng từ quỹ đạo khiến cho quỹ đạo của hệ hai thiên thể sẽ dần co lại, kết quả là tần số sóng hấp dẫn phát ra sẽ tăng theo thời gian, hay được gọi là tín hiệu di tần (chirp signal). Tín hiệu di tần có thể được theo dõi trong một khoảng thời gian dài, và chúng ta có thể tính được khối lượng của hệ hai thiên thể nhờ tín hiệu chirp[Ct 2], và từ kết quả quan trắc được biên độ sóng hấp dẫn ta sẽ thu được khoảng cách từ nguồn đến Trái Đất, và có nghĩa là phương pháp này sẽ bổ sung thêm một cách để đo hằng số Hubblehằng số vũ trụ khác.[31]

Với bán kính quỹ đạo của hệ thiên thể đôi giảm tăng dần, phương pháp gần đúng đoạn nhiệt không còn được áp dụng, hệ tiến tới giai đoạn hai vật sáp nhập vào nhau: giai đoạn hai vật thể sáp nhập dữ dội tạo ra một lỗ đen mới, và một lượng đáng kể năng lượng và động lượng được giải phóng dưới dạng sóng hấp dẫn (nhưng ngoài ra phần lớn dạng mô men động lượng không bị sóng hấp dẫn mang đi bởi định luật bảo toàn mô men động lượng, điều này dẫn tới hình thành một đĩa bồi tụ xung quanh lỗ đen mới, đĩa bồi tụ vật chất sẽ phát ra các chớp tia gamma), phương pháp xấp xỉ Newton cũng không áp dụng được ở đây (xem lỗ đen khối lượng sao); sau cùng một lỗ đen hình thành trong trạng thái xoay quanh một trục với vận tốc xoay chậm dần, cùng với đó là tần số sóng hấp dẫn phát ra cũng giảm dần, và cuối cùng lỗ đen sẽ ổn định về dạng lỗ đen miêu tả bằng mêtric Kerr.[32]

Theo kết quả thống kê và mô hình lý thuyết, số lượng các hệ đôi sao neutron là tương đối hiếm trong Vũ trụ, và số lượng chúng có thể quan sát được nhỏ hơn so với số lượng hệ đôi chứa một sao neutron và một sao lùn trắng, và phổ biến hơn là hệ chứa hai sao lùn trắng với sóng hấp dẫn phát ra có tần số thấp (10−5 đến 10−1 Hz).[33] Những hệ hai sao lùn trắng chắc chắn sẽ nhiều hơn hệ hai sao neutron quay trên quỹ đạo chật nổi tiếng là PSR B1913 + 16. Điều này bởi vì hầu hết trong Vũ trụ chiếm đa số là các ngôi sao có khối lượng nhỏ và trung bình, và hầu hết chúng ở trong hệ sao đôi. Các nhà vật lý thiên văn ước lượng được rằng, eLISA có khả năng phát hiện ra hàng ngàn những hệ đôi sao lùn trắng này, với xác suất tìm thấy cao hơn so với khả năng tìm thấy các hệ đôi sao neutron của những trạm thăm dò mặt đất. Nhưng mặt khác, trong Ngân Hà có quá nhiều hệ đôi sao lùn trắng sẽ dẫn tới mức độ ồn trong tần số dưới 1 milli-hertz, và mức ồn nền này được gọi là "mức ồn gây hiểu nhầm", vì nó cao hơn mức độ ồn từ thiết bị của các vệ tinh eLISA,[34] nhưng mức ồn này lại không ảnh hưởng tới những tín hiệu thu từ các hệ có chứa lỗ đen. Các hệ hai sao lùn trắng nằm bên ngoài Ngân Hà có biên độ sóng hấp dẫn tới Trái Đất quá nhỏ, mặc dù khi ấy mức ồn từ những hệ như vậy có tần số ồn tới 1 Hz, và mức ồn này vẫn còn thấp hơn nhiều so với mức ồn từ thiết bị của LISA.[35]

Tài liệu tham khảo

WikiPedia: Sóng_hấp_dẫn http://www.astronomycast.com/astronomy/ep-71-gravi... http://www.britannica.com/EBchecked/topic/242499 http://www.nature.com/nature/journal/v323/n6086/ab... http://www.nature.com/news/einstein-s-gravitationa... http://www.nytimes.com/2014/03/18/science/space/de... http://www.sciencebits.com/BlackHoleSimulation http://einstein-annalen.mpiwg-berlin.mpg.de/relate... http://www.ligo-wa.caltech.edu/ligo_science/P98000... http://www.ligo.caltech.edu/ http://www.ligo.caltech.edu/einstein.ram